The generator matrix

 1  0  0  0  1  1  1  6  1  1  1  1  1  1  1  3  1  1 X+3  1  1  1  1  1  1  1 2X+3  X 2X+3 2X  1  1  1  1 X+6  1  6  1  1 2X+3  6 2X  0  1  1 2X+6  1  1  1  1  1  X  1 2X+6  0  1  1  1  1 2X+3  1  1  1
 0  1  0  0  6  1  4  1  X X+3  2  8 X+7  1 2X+2 X+3 2X+4 X+6  1 X+5  5 X+2 X+4 X+8  3 2X+7  1  1  1  1  5 X+4  X 2X+8  1 2X+4  0 X+3  0 2X+6  1 X+3  1  3 2X+3  1 2X+8 X+6 2X+2 X+8  7 2X X+4  1  1 X+1 2X+7 X+4  1 2X+3 2X+7 2X+2 2X+8
 0  0  1  0 2X+7 2X+1 X+5 2X+4 X+1 X+8 2X+3 X+4 2X+8  6  8  1 2X+7 X+3  2  0  2  1 2X X+1  5 X+8  8  4  7 2X+2 2X+2 X+1  5 2X  6  0  X  X X+4  1  6  1 2X+1 2X+3 2X+5 X+3  7 X+7 X+3 2X+7  0  1 X+6 2X+6 X+5 2X+1  7 2X+7  8  1  2 2X 2X+8
 0  0  0  1 2X+5  3 2X+2 2X+2  1 X+3 2X+1 X+6 2X+7 2X+6  X 2X+8  8 X+7  3 2X+8  7 X+1 2X+8 X+5 X+5 2X+6 2X+1  X X+4 2X+5 2X+8 X+4 X+1  0 2X+1 2X+4  1  2  3 2X+3  8  7 X+3 X+3  5 X+8 X+6  3 2X+5  4 X+4 X+1 X+3 2X+1 X+4  8 2X+3 X+5  1 X+6 2X+5 X+3  0

generates a code of length 63 over Z9[X]/(X^2+6,3X) who�s minimum homogenous weight is 115.

Homogenous weight enumerator: w(x)=1x^0+1428x^115+1962x^116+4784x^117+8454x^118+9954x^119+16988x^120+24006x^121+26004x^122+36874x^123+46776x^124+45978x^125+56388x^126+61344x^127+48786x^128+48968x^129+38958x^130+21804x^131+14994x^132+10230x^133+3648x^134+1908x^135+672x^136+246x^137+98x^138+72x^139+36x^140+20x^141+30x^142+18x^143+12x^144

The gray image is a code over GF(3) with n=567, k=12 and d=345.
This code was found by Heurico 1.16 in 523 seconds.